
Fluctuation formula for complex random matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 L159

(http://iopscience.iop.org/0305-4470/32/13/003)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) L159–L163. Printed in the UK PII: S0305-4470(99)00492-8

LETTER TO THE EDITOR

Fluctuation formula for complex random matrices

P J Forrester
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 22 December 1998

Abstract. A Gaussian fluctuation formula is proved for linear statistics of complex random
matrices in the case where the statistic is rotationally invariant. For a general linear statistic
without this symmetry, Coulomb gas theory is used to predict that the distribution will again be a
Gaussian, with a specific mean and variance. The variance splits naturally into a bulk and surface
contibution, the latter resulting from the long-range correlations at the boundary of the support of
the eigenvalue density.

The phenomenom of universal conductance fluctuations in mesoscopic wires (see e.g. [1]) has
provided the motivation for a number of theoretical studies into fluctuation formulae for linear
statistics in random matrix ensembles [2]. To understand the reason for this, we first recall
that the striking feature of the conductance fluctuations is that they remain of order unity even
though the conductance itself is proportional to the number of channelsN . Now, in random
matrix models of this effect, the conductance can be written as a linear statistic of a certain
random matrix ensemble (we recall thatA is said to be a linear statistic of the eigenvalues
λj if it can be written in the formA = ∑N

j=1 a(λj ) for some functiona). In this setting,
the theoretical explanation for the phenomenum of universal conductance fluctuations is as an
example of a universal fluctuation formula in random matrix theory, the first example of which
was given in the pioneering work of Dyson and Mehta [3].

For random matrix ensembles in which the support of the density is one dimensional,
for example Hermitian or unitary random matrices, (Gaussian) fluctuation formulae are now
well understood both at a heuristic (see references cited above) and rigorous level [4–6]. It is
the purpose of this letter to initiate the study of fluctuation formulae in complex random
matrices [7–9], for which the eigenvalues uniformly fill a disc or ellipse in the complex
plane. We remark that complex random matrices have occured in recent physical studies
of the localization–delocalization transition in non-Hermitian quantum mechanics [10] and
chiral symmetry breaking in lattice QCD [11]. The distribution of a linear statistic is then an
observable quantity after averaging over many random copies of these systems.

To begin, we recall [7] that for a random matrix with complex elementsujk + ivjk
independently distributed with Gaussian distributionc

π
e−c(|ujk |

2+|vjk |2), the corresponding
probability distribution of the eigenvaluesλj = xj + iyj is proportional to

N∏
j=1

e−c|Erj |
2

∏
16j<k6N

|Erj − Erk|2 (1)

whereErj = (xj , yj ). Furthermore, to leading order, the support of the density of the eigenvalues
is the disc of radius

√
N/c. For the purpose of studying fluctuation formulae it is convenient
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to choosec = N so that the support of the density is the unit disc. The Fourier transform of
the distribution of Pr(A = u) is then given by

P̃ (k) =
∏N
l=1

∫
R2 dErl e−N |Erl |2+ika(Erl )∏

16j<k6N |Erk − Erj |2∏N
l=1

∫
R2 dErl e−N |Erl |2

∏
16j<k6N |Erk − Erj |2

. (2)

Suppose now that the linear statistic is of the formA =∑N
j=1 a(| Erj |), so that the function

a only depends on the distance from the origin. Introducing polar coordinates and using
the Vandermonde determinant expansion of

∏
16j<k6N(zk − zj ) the integrals in (2) can be

evaluated with the result

P̃ (k) =
∏N
l=1

∫∞
0 e−ssl−1eika(

√
s/N) ds∏N

l=1

∫∞
0 e−ssl−1 ds

. (3)

This is the exact expression for finiteN . To obtain its form forN →∞, we change variables
s → ls and expand the integrand about its large-l maximum ats = 1. A straightforward
calculation then gives

P̃ (k) ∼
N∏
l=1

eika(
√
l/N)e−k

2(a′(
√
l/N))2 ∼ eikµe−k

2σ 2/2 (4)

with

µ = 2N
∫ 1

0
ra(r) dr σ 2 = 1

2

∫ 1

0
r(a′(r))2 dr. (5)

Thus the distribution ofA is a Gaussian with mean and variance as given by (5). Note in
particular that the variance is O(1).

Next we address the more general situation in whicha is not rotationally invariant. To make
progress we must proceed heuristically. The p.d.f. (1) can be interpreted as the Boltzmann
factor of the two-dimensional one-component plasma (2dOCP) at the special value of the
coupling0 = 2, [12]. Using linear response theory and macroscopic electrostatics, it is
possible to argue [13, 14] that in general the distribution of a linear statistic in a classical
Coulomb system in the conductive phase will be Gaussian (this assumes also that the random
function varies over macroscopic distances relative to the interparticle spacing). The Gaussian
distribution is uniquely characterized by its mean and variance. But independent of the
underlying distribution, these quantities are given by

µ = N

π

∫
3

dEr a(Er), σ 2 =
∫
3

dEr1 a(Er1)
∫
3

dEr2 a(Er2)S(Er1, Er2) (6)

where S(Er1, Er2) is given in terms of the truncated two-particle distribution function by
S(Er1, Er2) = ρT(2)(Er1, Er2) + N

π
δ(Er − Er ′), N

π
is the particle density and3 denotes the unit disc.

We see immediately from the formula forµ in (6) that the formula forµ in (5) is reclaimed
if a(Er) = a(|Er|). More challenging is to reproduce the formula forσ 2, and to proceed to
generalize this formula for generala(Er).

This task can be undertaken by again appealing to Coulomb gas theory. In the infinite
density limit the functionS(Er1, Er2) in (6) for the 2dOCP with general coupling0 is expected
to have thebulkuniversal form [14]

Sbulk(Er1, Er2) = − 1

2π0
∇2δ(Er1− Er2)

= 1

2π0

(
∂

∂x(1)
+ i

∂

∂y(1)

)(
∂

∂x(2)
− i

∂

∂y(2)

)
δ(Er1− Er2). (7)
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At 0 = 2 this can be checked from theρ →∞ limit of the exact formula [7]Sbulk(Er1, Er2) =
−ρ2e−πρ|Er1−Er2|

2
+ρδ(Er1−Er2). Substituting (7) in (6), and integrating by parts (ignoring possible

boundary terms, which are separately treated below) gives

σ 2
bulk =

1

2π0

∫
3

dx dy

((
∂a(x, y)

∂x

)2

+

(
∂a(x, y)

∂y

)2
)
. (8)

In the special casea(Er) = a(|Er|), 0 = 2, (8) reproduces the result (5) forσ 2.
The crucial difference between the case of generala(Er) and the rotationally invariant case

a(Er) = a(|Er|) is that in the latter caseσ 2 contains a contribution from the surface correlations
of the same order (O(1)) as the contribution from the bulk correlations. This effect, due to
the long-range nature of the correlations at the boundary of Coulomb systems [15], was first
noted by Choquard [16] and collaborators, who studied the variance of the dipole moment
(a(Er) = x) for classical Coulomb systems. Indeed the variance of this statistic was used to
compute from microscopic statistical mechanics the macroscopicshape dependentdielectric
susceptibility of the Coulomb system.

Like in the bulk, the correlationS(Er1, Er2) has a universal form forEr1 andEr2 at the surface.
However, unlike the situation in the bulk, this correlation is long ranged and shape dependent.
For3 a unit disc, the universal form is [14]

Ssurface((r1, θ1), (r2, θ2)) = − 1

2π20

(
∂2

∂θ1∂θ2
log

∣∣∣∣sin
θ1− θ2

2

∣∣∣∣) δ(r1− 1)δ(r2 − 1) (9)

where polar coordinates have been introduced. At0 = 2 this form can be derived explicitly
from the exact evaluation ofS(Er1, Er2) in the finite system [16]. Substituting in (6) gives

σ 2
surface= −

1

2π20

∫ 2π

0
dθ1

(
∂

∂θ1
a(1, θ1)

)∫ 2π

0
dθ2

(
∂

∂θ2
a(1, θ2)

)
log

∣∣∣∣sin
θ1− θ2

2

∣∣∣∣
= 2

0

∞∑
n=1

n|an|2 a(1, θ) =
∞∑

n=−∞
ane

inθ . (10)

This quantity vanishes fora(Er) = a(|Er|).
Consider now a more general ensemble of complex random matrices [8], in which the

members,J say, are of the formJ = H + ivA. HereH andA are Gaussian Hermitian random
matrices with joint p.d.fs for the elements proportional to exp(− N

1+τ trX2) (X = H,A and
τ = (1− v2)/(1 +v2)). The corresponding eigenvalue p.d.f. is proportional to

exp

(
−N

N∑
j=1

(
x2
j

1 + τ
+

y2
j

1− τ

)) ∏
16j<k6N

|Erj − Erk|2 (11)

(note that in the caseτ = 0 (11) agrees with (1)), and to leading order the support of the
eigenvalue density consists of an ellipse with semi-axesA = (1 + τ), B = (1− τ). The
eigenvalue density itself is uniform and thus has the valueN/(π(1− τ 2) inside the ellipse.

The p.d.f. (11) can be interpreted as the Boltzmann factor of the 2dOCP at0 = 2 in a
quadrupolar field [17, 18]. Thus, Coulomb gas theory gives that asN →∞ (infinite density
limit) the distribution of a linear statistic will again be Gaussian. The mean will be given as
in (6), but with3 now the ellipse specifying the support of the eigenvalues, and the factor
N/π which represents the eigenvalue density replaced byN/(π(1− τ 2)). With3 the ellipse,
the bulk contribution to the variance is again given by (8). For the surface contribution, we
require the fact that the universal form of the surface correlation at the boundary of an ellipse
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is [16,18]

Ssurface((ξ1, η1), (ξ2, η2)

= − 1

2π20h(ξb, η1)h(ξb, η2)

(
∂2

∂η1∂η2
log

∣∣∣∣sin
η1− η2

2

∣∣∣∣) δ(ξ1− ξb)δ(ξ2 − ξb)
(12)

where(ξ, η) are elliptic coordinates, specified byx + iy = cosh(ξ + iη), andh(ξb, η)dη
gives the differential surface element. As in the disc case (9), this form has been explicitly
verified [18] from the known exact expression forS(Er1, Er2) in the finite system. Since the semi-
axes are specified byA = coshξb,B = sinhξb, ξb is related toτ by tanhξb = (1− τ)/(1 +τ).
Substituting (12) in (6) gives

σ 2
surface= −

1

2π20

∫ 2π

0
dη1

(
∂

∂η1
a(ξb, η1)

)∫ 2π

0
dη2

(
∂

∂η2
a(ξb, η2)

)
log

∣∣∣∣sin
η1− η2

2

∣∣∣∣
= 2

0

∞∑
n=1

n|an|2 a(ξb, η) =
∞∑

n=−∞
ane

inη (13)

(note the similarity between (13) and (10)).
There is a simple linear statistic for which the exact distribution can be calculated, thus

allowing the above predictions to be tested. This statistic is the linear functiona(x, y) =
c10x + c01y. Substituting in the analogue of (2) for the p.d.f. (11) raised to the power0/2, the
resulting dependence onk can be simply calculated by completing the square and changing
variables in the integrand (see [5] for an analogous calculation in the case of Hermitian random
matrices). We find

P̃ (k) = e−k
2(c2

10(1+τ)+c2
01(1−τ))/(20) (14)

independent ofN . Thusσ 2 = 1
0
(c2

10(1 + τ) + c2
01(1− τ)). Substituting the linear function

a(x, y) in (8) and (13) and adding the result verifies that the general formulae reproduce the
exact value.
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